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Conjugate flows have been dehed  generally as flows uniform in the direction of 
streaming that separately satisfy the relevant hydrodynamical equations, so 
allowing a transition from one flow to its conjugate to be consistent with mass 
and energy conservation. In  previous studies of various examples, certain general 
principles have been found to apply to conjugate flows: in particular, one in 
a pair of such flows is subcritical (subsonic) and the other supercritical (super- 
sonic), the former having greater flow force (i.e. momentum flux plus pressure 
force). In  this paper these principles are confirmed in another field of application, 
for which the theory of conjugate flows takes a novel course. 

The theoretical model defined in $ 2  consists of a straight duct of arbitrary 
cross-section filled with a perfect fluid whose constitutive properties vary with 
cross-sectional position, and whose primary, prescribed flow is axial with a 
velocity distribution that may be non-uniform. In  $ 3  the possibility of a con- 
jugate flow in the same duct is investigated, and its principal properties relative 
to those of the primary flow are deduced from certain simple inequalities between 
integrals over the cross-section. A Lagrangian description of the conjugate flow 
is essential, but the properties in question are established without the necessity 
of determining this flow explicitly. At the end of $3,  a modification of the model 
is discussed accounting for dissipative, flow-force conserving transitions (shocks). 
The application of the theory to flows of non-uniform suspensions of gas bubbles 
is considered in $4. 

1. Introduction 
It was suggested in a recent paper (Benjamin 1971, 2nd footnote to p. 590) 

that general conjugate-flow principles should apply to flows of liquid-gas mix- 
tures, even when the properties of the composite fluid are not uniform over the 
flow cross-section.? For homogeneous suspensions of small gas bubbles in liquids 

t As an example of how such non-uniformities can arise naturally, consider the situation 
where a profusion of small gas bubbles is suspended in a liquid flowing along a horizontal 
tube, and originally the suspension is uniform. Due to migration of the bubbles under 
gravity, the local average concentration of gas in the suspension will gradually depart from 
uniformity with increasing distance along the tube, becoming smallest in the lowest region 
of the cross-section, and the local distribution of bubble sizes will also become dependent 
on cross-sectional position. 
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a theory of normal shock waves is known, having been initiated by Ackeret 
(1930) and developed by Campbell & Pitcher (1958), and a recent study by 
van Wijngaarden (1968) has pointed out a detailed correspondence between this 
problem and the problem of open-channel flows that provides the standard 
exemplification of conjugate-flow principles. If the assumption of homogeneity 
is relaxed, however, the formal analogy with the water-wave problem disappears 
and the relevance of these principles ceases to be obvious. The expectation that 
they should still apply can be supported, as in the cited paper, by certain abstract 
considerations about nonlinear flow problems, but a specific treatment of the 
new problem is clearly more satisfactory from a practical standpoint. In  the 
present paper the usual properties of conjugate flows are confirmed in respect of 
non-uniform suspensions of gas bubbles, being shown to emerge in a novel way 
from the equations of steady motion. 

The required theory for gas-bubble suspensions is presented as an instance of 
a more general theory, which conceivably may have other practical applications. 
In  $ 2 the generalized version of the problem is introduced, allowing for a duct of 
arbitrary cross-section filled with a fluid whose constitutive properties vary 
arbitrarily over the cross-section. A primary flow of this fluid is defined, having 
an axial velocity that may be non-uniform, and a criterion is explained whereby 
the flow can be classified as subsonic or supersonic. The main theoretical results 
are derived in $ 3 ,  establishing properties of a flow that is conjugate to the primary 
one in the sense that it may occupy the same duct and satisfies conditions of mass 
and energy conservation in relation to the primary flow. A note on the practical 
interpretation of the established conjugate-flow properties is included near the 
end of $3,  and in conclusion an adaption of the theory is proposed which serves 
as a rough model for shock-wave transitions that conserve flow force but are 
dissipative. Then, in 5 4, the details of the application to non-uniform suspensions 
of gas bubbles are presented. 

The material of this paper is essentially a contribution to nonlinear long-wave 
theory, and in the main no attention is paid to interesting frequency-dispersive 
effects that appear to be typical of the flow systems in question. To conclude the 
discussion in $ 5, however, a characteristic-value problem is noted relating to 
the dispersion of infinitesimal waves unrestricted in length. The dispersive effects 
thus represented, and particularly their interactions with mild nonlinear effects, 
seem to be a deserving subject for further study. 

To understand the intention of the following analysis, one must appreciate 
the complexity of the physical situations towards whose clarification this work 
is directed. In  practice flows of bubble suspensions are likely to depend sig- 
nificantly on several factors not treated here, notably dissipation due to relative 
motion between the bubbles and the liquid, and a comprehensive theory seems 
out of the question. But simplified models such as the present one can still offer 
insight into complicated phenomena even when there is little hope of analysing 
them accurately. As exemplified by its application to the vortex breakdown 
phenomenon (Benjamin 1962, 1965, 1967), conjugate-flow theory provides 
a rationale for a class of nonlinear effects hardly amenable to precise analysis, 
although its practical value generally depends on broad physical reasoning with 
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which it can be coupled. Some reassurance that in the present application the 
theory is well founded, despite its drastic simplifications, is given by the argument 
at the end of $ 3  where a hypothetical allowance for dissipation is shown to have 
plausible consequences. 

2. Specifications of the generalized problem 

section is denoted by CT. The cross-sectional area is denoted by &, thus 
We take Cartesian co-ordinates (x, y ,  z )  with x along the duct, whose cross- 

& = dxdy.  Jv 
The fluid filling the duct is supposed to be inviscid, and the effect of gravity on 
it is ignored. In  the primary state of the fluid the pressure p is therefore a con- 
stant, which we take to be zero without loss of generality, and the other fluid 
properties are independent of z .  It is assumed that the density p of a sample of 
fluid taken from any point of the cross-section depends only on pressure, but 
the relationship between p and p varies with position in CT. That is, we are given 
the function 

such that R(0, x ,  y) is the density in the primary state and, if the fluid is disturbed 
from this state, its density is specified by R(p,  x, y) with x, y as Lagrangian co- 
ordinates referring to particular fluid particles. Correspondingly, we have as 

Hereafter these functions will generally be written simply as R(p)  and H ( p ) ,  
but will always be implied to depend on (x, y). 

The preceding assumption, that the density of a fluid sample depends only 
on pressure, supersedes the thermodynamic considerations needed to describe 
the general behaviour of a compressible fluid, and the meaning of this simplifica- 
tion deserves to be stressed. We recall that for steady flows the condition of 
energy conservation may be written 

where 6 denotes variation along a streamline, &ua the kinetic energy and E the 
internal energy of the fluid per unit mass. The sum E+(p /p )  is termed the 
enthalpy. Now, it is implied by (2.1) that changes of state in the fluid follow a pre- 
scribed reversible process; and if we further assume the process to be adiabatic,t 

t As regards the application to suspensions of gas bubbles, the implication of this 
assumption is not necessarily that the gas in each bubble is compressed or expanded adiabat- 
ically: it is the composite fluid that is understood to retain heat. In fact, for suspensions of 
fairly small bubbles undergoing flow processes that m e  not exceptionally rapid, it is a good 
approximation to assume that thermal equilibrium is maintained between the components 
(see $4). Since the heat capacity of the liquid enormously exceeds that of the suspended 
gas, compression of the gas in each bubble is virtually isothermal and the heat generated by 
it is absorbed in a surrounding layer of liquid. The changes of state in the composite fluid 
are then effectively reversible and adiabatic in the present sense. 
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then changes of internal energy are accountable only to the mechanical work of 
compression: thus 

It follows that the function H defined by (2.2) is identifiable with enthalpy 
relative to the primary state, and the energy equation becomes 

dE = -pd(I/p). 

S(+u2+H) = 0, (2.4) 

which is a relation between mechanical properties alone. 
Equation (2.4) is to be the basis for precise deductions about idealized conjugate 

flows, but in respect of practical applications the possibility of its being in error 
to some extent has to be acknowledged. As already mentioned, internal friction 
is particularly relevant as a possible source of error in flows of gas-bubble 
suspensions, because relative motion between the bubbles and the liquid is 
induced by any pressure gradient to which a suspension is subjected. To allow 
for such irreversible effects, a quantity A may be defined as the surplus of internal 
energy above the level acquired through a reversible adiabatic process as implied 
by (2.1). Accordingly A is added within the brackets in equation (2.4), being 
describable as the waste of available energy. F n  thermodynamics A is usually 
expressed as JTds ,  where T is temperature and s entropy; but this notion does 
not seem additionally helpful in the present context. For instance, if a flowing 
suspension of gas bubbles maintains thermal equilibrium and the predominant 
cause of energy waste is internal friction, then the temperature of the liquid is 
hardly relevant to the essentially mechanical problem: the thermodynamic in- 
terpretation, that the frictional losses heat up the liquid by a minute amount 
and entropy is increased, is obviously a side-light.] 

The most likely practical application of the theory is to the case of a plane 
shock wave advancing with constant speed C into fluid at rest. By taking a frame 
of reference moving with the wave, we may model this situation as a steady flow 
in which the fluid approaches with uniform velocity C. But the present treatment 
will extend to the case where the undisturbed fluid has a non-uniform axial 
velocity U(x, y). I n  a frame moving with a wave that propagates against the 
flow, the primary velocity is then 

W ( X , Y )  = c+ U ( X , Y ) .  

We shall hereafter treat W ( x ,  y )  as a given property of our steady-flow model, 
with further reference to this interpretation, and we assume that W > 0 through- 
out (T. The results obtained on this basis apply directly, of course, to the practical 
case of stationary shocks or other transitions on a given stream. 

DeJinition of subsonic and supersonic 
The theory to be developed in 0 3 relies on an idea proposed by Benjamin (1962, 
1965) for generalizing the classification of subcritical and supercritical states of 
steady flow - called here subsonic and supersonic since sound waves are indeed 
in question. This idea becomes expedient when the primary axial velocity is 
non-uniform, so that there is no frame of reference in which the fluid appears 
stationary, 
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Let W(x, y )  be the velocity in the + z direction, and suppose that a free wave 
of extreme length is superposed without energy loss on the flow. The wave may 
propagate with either of two velocities, say c+ and c- < c+, reckoned positively 
in the z direction. Propagating with the flow its velocity will be c+ > 0, which, 
because of the flow’s convective action, will be greater than the velocity of 
a long wave relative to the same fluid at rest. Propagating against the flow its 
velocity will be c-, which may be either positive or negative, the latter if the 
convective action is not too great and consequently the wave makes headway 
upstream. The generalized Mach number may be defined by 

(2.5) = (c+ + c-)/(c+ - 6-), 

which in the case W = const. reduces to the familiar definition 

N = w/c 
since c+, c- = W k c, where c is the long-wave speed relative to  the fluid at rest. 

The given flow W(x,y) is supersonic if c- > 0 and so N > 1. This condition 
may also be understood to mean that a flow with the reduced velocity W(x, y) - c- 
is exactly sonic, for this is the steady flow observed in a frame of reference moving 
downstream with the wave at velocity c-. 

3. Properties of conjugate flows 
We consider the possibility that the primary flow as defined in 0 2, say flow A ,  

is connected through some form of steady transition to another axially uniform 
flow B with the same cross-section (T. Mass and available energy are assumed 
to be conserved through the transition, so that flow B may be termed conjugate 
to A and vice versa. The nature of the transition will be discussed later, after 
we have worked out the relationships between the pair of conjugate flows. 

Since flow B is like A axially uniform, the pressure in it is constant. Hence, 
on the understanding that the co-ordinates x, y of a streamline in flow A become 
x’, y’ in B, the density of the fluid in flow B is given by the function R introduced 
in (2.1), thus 

Let w(#,y’) denote the axial velocity in flow B. Then the condition of mass 
conservation may be written 

R(O) W = R ( p )  w J, 

where J = a(%’, y ’ ) / W ,  Y) 
is the ratio dx’ dy’ldx dy between the cross-sectional areas of the same elementary 
stream-tube in flow B and in flow A .  We assume that w > 0 everywhere in cr 
(i.e. there is no stagnation in flow B),  and that the values of R ( p )  in (T are bounded 
positively from below (i.e. we exclude the possibility of cavitation, which might 
occur for sufficiently large negative values of p ) .  Thus J is determined by (3.1) 
as a bounded function. 

(3.1) 

The condition of energy conservation is, from (2.4), 

+W2 = = & w ~ + H @ ) ,  (3.2) 
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where H ( p )  is the enthalpy function introduced in ( 2 . 2 ) .  Using this to eliminate 

= I @ ) ,  say. J 
[The function I @ ) ,  like R ( p )  and H ( p ) ,  is implied to depend also on x ,  y.] Since 

IU J d x d y  = Iudx' dy' = d, 

the condition determining the possible value of p in flow B is hence seen to be 

= J q P ) ,  say. J 
Anticipating that equation (3.4) has only one non-trivial root, we denote it byp,,. 

To find flow B in detail, we would need to solve the differential equation 
J = I (pJ in a, subject to the obvious boundary condition that the vector 
(x', y') - (x, y )  has no normal component at the boundary of a. The most im- 
portant properties of flow B in relation to flow A can, however, be deduced 
directly from equation (3.4). 

The condition for sonic $ow 
As recalled a t  the end of 5 2,  a flow is called sonic when an infinitesimal wave of 
extreme length can be superposed upon it. Accordingly, this condition may be 
inferred to apply to flow A in the limit as the root p1 of (3.4) tends to zero- that 
is, as the conjugate flows A and B coincide. Thus the sonic condition for the 
primary flow is expressible by 

which, when we use the fact that H'(p)  = I /R (p )  by definition, is found to be the 

Y ( 0 )  = 0,  

same as 

[cf. (3.8) below]. It may naturally be assumed that the density of the fluid 
increases with pressure, so that R'(0) as well as R(0) is positive everywhere in u. 

Putting W = c (const.) in ( 3 4 ,  we get a formula for the speed c of very long 
infinitesimal waves (i.e. the low-frequency sound speed) relative to the fluid at 
rest, thus 

It may be helpful to rewrite this formula with the meaning of the function R made 
explicit. Using zero subscripts to connote the undisturbed state of the fluid, 
we have 

(3.6') 

In  the case that the properties of the fluid are uniform over the cross-section, 
this reduces to the familiar result c2 = (dp/dp),. 
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From the considerations in 5 2 it is evident that for a general primary velocity 
W(x,  y), the wave velocities c+ and c- entailed in the definition (2.5) are roots of 

ax d y  
(3.7) 

If the positive function W has bounded derivatives in a neighbourhood of its 
maximum on cr, the root c+ satisfies 

c+ > max W(x,  y) > 0, 

since the value of the integral on the left-hand side of (3.7) can be varied over 
the interval (0,oo) by choice of c+ satisfying this condition. The primary flow is 
subsonic (N, c 1) if c- < 0, which is implied if 

x , y s f l  

Hence, in view of the fact that 

it follows that 

Similarly it appears that 

Y’(0) > 0 implies subsonic (N, c 1). 

sl(0) c 0 impliessupersonic (N, > 1). (3.10) 

The transcritical property 
We proceed on the assumption that 

Y ( p )  > 0 (3.11) 

for all relevant values of p .  Useful conclusions may still be reached without this 
assumption, but its introduction is justified since it simplifies the theory and is 
in fact borne out in the application to suspensions of gas bubbles. Considering 
this application in 0 4, we shall find that I”@)  > 0, where I @ )  is the integrand of 
the integral 9@) over cr, so that the condition (3.11) is obviously provided. 

Accordingly, if Y ( 0 )  < 0 and thus the primary flow A is supersonic, the 
following implications of equation (3.4) become clear as illustrated in figure 1. 
The non-trivial root p l  is evidently unique and it must be positive (i.e. pressure 
is increased in the conjugate flow B).  Furthermore 

4’(Pl )  > 0. (3.12) 

Upon differentiation of (3.4) and use of the fact that H ’ b )  = l/R@), it appears 
We now show that this inequality implies flow B to be subsonic (NB < 1). 

that 

(3.13) 
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0 P1 P 

FIGURE 1. Illustration of equation (3.4). 

by virtue of the mass-conservation condition (3.1). But we know that 

B(PJ = P(X’, Yf) ,  

and similarly 

With regard to flow B, therefore, (3.12) is seen in the light of (3.13) to be precisely 
the criterion of subsonic flow that we exemplified by (3.8) and (3.9) with regard 
to flow A. 

Complementary conclusions for the case when the primary flow is subsonic 
can be obtained by an obvious adaption of the argument, or simply by rephrasing 
the previous conclusions after redefining B as the primary flow. If Y ( 0 )  > 0, 
thenp,, < 0 and 9‘(pl) < 0, which implies that the conjugate flow B is supersonic. 

As thus exemplified, the transcritical property of conjugate flows has appeared 
to be a universal attribute of such flows in analogous problems (see Benjamin 
1971, p. 589). 

Flow force 

The flow force is defined as the sum axial pressure force and momentum flux 
through the whole cross-section of the flow, thus 

(3.14) 

Using the condition of mass conservation (3. l), we may express this alternatively 

by 
x = p d  + R(O) ww dx ay, L- 

and hence, using the condition of energy conservation, by 

S = p d +  R(0) W(W2-2H(p)}t.dxdy. (3.15) 

The last expression depends only on p and the primary-flow specifications. 

(3.16) 

l. 
Differentiating it with respect to  p, we obtain 

dSldp = d - Y ( p ) ,  



Conjugate-$ow theory for heterogeneous fluids 553 

where 9(p) is the integral in equation (3.4). Thus we see that dSldp = 0 for 
either of the conjugate flows A or B, i.e. forp = 0 orp  = p,. This result exemplifies 
asgeneral principle that has been established in studies of various other conjugate- 
flow problems: namely, if an expression for flow force is varied subject to con- 
ditions of mass and energy conservation, it takes stationary values for conjugate 
flows (cf. Benjamin 1971, 0s 3.5, 4, 6.5). 

As a reference to figure 1 makes clear, the result (3.6) implies that when the 
primary flow is supersonic and consequently p ,  is positive, then dSldp > 0 for 
0 < p < p l .  Correspondingly, when the primary flow is subsonic and p l  is 
negative, then dS/dp > 0 for p1 < p < 0. It follows that in any pair of conjugate 
flows, the subsonic member has the greater value of flow force. This proposition 
too has been found to apply generally in various other conjugate-flow problems. 

Interpretation 
I n  practice a transition between conjugate flows of the present kind may be 
exemplified in either of two ways, which we can appreciate by analogy with 
other conjugate-flow systems. The case admitting simpler interpretation occurs 
when the primary flow is subsonic. A transition to the conjugate supersonic flow 
may then be brought about by an obstacle placed in the stream, whose action 
is thus analogous to that of a sluice-gate spanning an open-channel flow. The 
crux of this situation is that the relative deficiency of flow force in the supersonic 
flow downstream corresponds to the external force required to hold the obstacle 
in place. 

A transition from a supersonic primary flow to its subsonic conjugate serves 
as a rudimentary model for a normal shock wave. It cannot occur without 
modification, however, because of the unbalance of flow force. In  a strong shock 
dissipative effects are likely to be predominant, so that the present theory would 
be irrelevant; but for a weak shock in a dispersive system of the present kind, 
such as a gas-bubble suspension (see $ 5  below), dissipation may be comparatively 
unimportant and the flow-force excess of the subsonic flow may be balanced by 
oscillatory-wave formation on an intermediate length scale. Thus the hypo- 
thetical conjugate is significant in that the actual wavy flow subsists on it by 
consuming its extra flow force as ‘wave resistance ’. This idea serves to explain 
undular hydraulic jumps, for example, and it has been applied to  the interpreta- 
tionof the vortex breakdown phenomenon (Benjamin 1962,1965,1967). A theory 
that can be used to account more precisely for undular shocks in homogeneous 
suspensions of gas bubbles has been developed by van Wijngaarden (1968). 

Dissipative transitions 
In  real applications, as to non-uniform suspensions of gas bubbles, it would be 
a complicated problem to calculate the various secondary effects not included 
in the idealized model considered so far. The thermodynamic processes in the 
fluid may not be entirely reversible, and, with regard to suspensions, dissipative 
effects may be expected to arise particularly from relative motion between the 
bubbles and the liquid. A precise account of such effects is beyond the scope 
of the present type of theory, which is concerned only with broad principles 
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governing flow transitions andnot with their internal structure. However, to show 
that frictional dissipation and other irreversible effects are broadly accountable 
within the framework of present ideas, the following hypothetical modification 
is instructive. 

As introduced in $2, the non-negative quantity A is the excess of internal 
energy above the value achieved through the reversible adiabatic processes pre- 
viously represented, and for the conjugate flow in question we suppose that 

A = €f(z,y), 

wheref(x, y) is a particular non-negative function on u. That is, we take a hypo- 
thetical spatial distribution for the waste of available energy, but allow its 
magnitude e to be an adjustable parameter. (A guess such as f = W 2  might be 
made to specify the model further, but an a priori estimate off is essentially 
beyond present means.) In  place of (3.2), the condition of energy conservation 
now becomes 

and we assume that e is small enough to keep w > 0 as before. Hence the ex- 
pression (3.15) for flow force is replaced by 

iW2 = $w"+(p)+ef, 

(3.17) 

and we note that in the relevant range of the two variablesp and E (i.e. such that 
w > 0 ) ,  the partial derivative S, is negative while S,, is positive. Since 

this implies that the variation of e with p ,  subject to fi keeping its original value 
S(0, 0 ) ,  is in the same sense as the variation of S withp when e = 0. Thus we may 
expect that the flow-force excess found to characterize a subsonic conjugate flow 
when available energy is conserved can be cancelled by dissipation. 

From (3.17) it appears that 

S P ( P , 4  =JJ-mJ,4, (3.18) 

where 9 ( p ,  e )  is the same as the function 3 ( p )  in (3.4) except that the radical 
representing w is replaced as in (3.17). As noted before, fiP(O, 0) is identically 
zero. And, corresponding to (3.4) and (3.16), the condition of overall mass con- 

(3.19) 
servation is now 

Assuming the primary flow to be supersonic, i.e. 

fip(Py4 = 0. 

&?(O,O) = - 4 ( O ,  0) > 0, (3.20) 

we consider the possibility of a conjugate flow conserving flow force, being there- 
fore realizable through a stationary shock. That is, values of p and e are required 
satisfying both (3.19) and 

S(P, 4 = w h o ) .  (3.21) 
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If we suppose as before [cf. (3.1 l)] that 

S p p p h  4 = - 4 p ( P ,  4 < 0, 
and take account of (3.20) together with the fact that S, is negative, a diagram 
of the smooth function S(p ,  8 )  shows that a solution ( p l ,  el) always exists with 
p1 > 0 and el > 0. It appears, moreover, that 

S p p ( P 1 , 4  = -4@A < 0; (3.22) 

and on the basis of this fact the argument used before, in relation to (3.12) and 
(3.13), conilrms that the conjugate flow is again subsonic. Thus we find all the 
usual properties of a normal shock: a transition from a supersonic to a subsonic 
state of flow conserving flow force, with a rise of pressure and a loss of available 
energy. 

The relationship between the available-energy conserving and the flow-force 
conserving conjugate flows respective to the same supersonic primary flow is 
particularly easy to appreciate in the case of a weak shock (0 < NA - 1 < l), 
for which 

is a small positive number, very much less than the positive numbers 

-Sppp(0, 0) = a, -S,(O, 0) = p. 

S@, E )  = S(0,O) + asp2 - Q a p 3  -& 

PI = 2Sla > 0, 

The leading terms of the Taylor-series expansion of S then give approximately 

In  the first instance, we take e = 0 and the condition S, = 0 a t  p = pl  determines 

and hence 
Furthermore we have 

S(pl) - S(0) = #S+.~ = &ap?. 

S p p ( P 1 )  = -4  
which fixes the subsonic Mach number NB of the conjugate flow. In  the second 
instance, when both the conditions (3.19) and (3.20) are applied, the pressure pl 
and NB are the same as before, but now 

El = upy12p. 

Finally, we note that, when the primary flow is subsonic, dissipation augments 
the flow-force deficiency in the supersonic conjugate flow. Thus, as may be 
expected, the drag experienced by an obstacle bringing about a subsonic- 
supersonic transition is increased by dissipation. Alternatively, a given external 
force can cause such a transition only if the accompanying dissipation is not 
too large. 

4. Application to suspensions of gas bubbles in liquids 
To substantiate this application of the general theory, it is required to specify 

the functions R(p)  and H ( p )  introduced in (2.1) and (2.2). Descriptions of the 
essential properties of gas-bubble suspensions are available in many places, for 
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example, in Prandtl (1952, pp. 330, 331), Mallock (1910), Carstensen & Foldy 
(1947), Meyer & Skudzrijk (1953) or Hsieh & Plesset (1961), and we shall proceed 
on the usual assumption that the bubbles are small enough and numerous 
enough for local aggregate properties to be meaningful. It is also usually assumed 
that the bubbles are locally all equal, but allowance will be made here for the 
more realistic case where there is a distribution of bubble sizes. Although the 
main concern of the theory is that the density p and other properties of the 
composite fluid vary with position in the cross-section (r, our immediate task is 
to evaluate them locally, as if for a homogeneous mixture. 

In  the application of conjugate-flow concepts, the possibility of relative 
motion between the bubbles and the liquid is disregarded, justifiably in respect 
of the separate states of flow with uniform pressures. It should be acknowledged, 
however, that in passing through a transition of the kind approximately modelled 
by the theory, a gas-bubble suspension will inevitably suffer axial pressure 
gradients that will induce some such relative motion; and, as was suggested 
earlier, this may be a major cause of viscous dissipation tending to invalidate 
the postulated condition of energy conservation between conjugate states. The 
expansive or contractive flow created in the neighbourhood of each bubble by 
dilatations of the suspension is probably less significant as a cause of dissipation, 
although its inertia is responsible for frequency-dispersive effects which may be 
manifest in undular shocks (further reference to these effects will be made in 
the penultimate paragraph of 0 5). These various factors are ignored here in the 
same spirit as previous applications of conjugate-flow principles: the point is 
that in reducing the problem to the present manageable essentials there remains 
a theoretical framework on which plausible interpretations of observed phe- 
nomena may eventually be built. 

According to estimates that have been made in previous theoretical studies 
of gas-bubble suspensions (e.g. see Ackeret 1930; Campbell & Pitcher 1958; 
Hsieh & Plesset 1961), there is reason to assume that changes in the gas accom- 
panying expansions or compressions of the suspension are isothermal, provided 
the bubbles are fairly small (say, with diameters 0.1 mm or less) and the hydro- 
dynamic time scales are not very short (say, longer than 1 millisecond). The 
implication is that the conductivities of liquid and gas are large enough, while 
the flow processes are slow enough, for thermal equilibrium to be virtually 
achieved at each instant along a fluid trajectory. We shall proceed on this 
assumption, noting that the expression (2.2) for reversible enthalpy changes of 
the composite fluid is consistent with it. It should be acknowledged that, in some 
practical examples with larger bubbles, heat exchange between the gas and the 
surrounding liquid may lag significantly behind the flow-induced changes in the 
suspension, even perhaps to the extent that the assumption of adiabatic con- 
ditions in the gas might provide a better model; and for conditions intermediate 
between this last extreme and the case assumed, the expression (2.2) ceases to 
identify enthalpy . 

Let v denote the volume of gas suspended per unit mass of liquid. Ignoring 
the mass of the gas, we take this to be the same as the volume of gas per unit 
mass of the mixture. Then, if pl denotes the density of the liquid and s the volume 
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fraction of gas in the mixture, which is the same as pv, the density of the mixture 
is evidently given by 

from which follows 
P = Pdl - 8) = Pdl - P V ) ,  

p=- Pl 
1 +pp '  

When the gas is contained in spherical bubbles of equal radius a, we have simply 

v = $nna3, 

where ?z is the number of bubbles per unit mass. More generally, for a suspension 
of various spherical bubbles, we have 

n 

i= 1 
v = &i-xa$.  (4.3) 

While being perfectly clear in principle, this representation of v would not be 
particularly useful for practical evaluation when-as is implied by our basic 
assumption about the suspension- the bubbles are very profuse. A more ex- 
pedient representation in terms of probabilities or averages over fairly large 
samples might be 

v = +njoma3ci<(a), (4.4) 

where g(a) is the probable (or average) number of bubbles with radii not greater 
than a, per unit mass of the mixture. We shall, however, use the simpler repre- 
sentation (4.3) in what follows, conveniently leaving the limits 1, ?z implicit: 
thus v = $mZa:, where the summation Z carries the dimension (mass)-l. 

Let P denote absolute pressure and Po its value in the primary state of the 
suspension, so that in accord with the definition of p in 5 2 we have 

P = Po+$). 

We assume that P > 0 always, excluding the possibility of unlimited expansion 
of any bubble (i.e. cavitation). For any particular bubble the pressure Qi of the 
contained gas is given by 

Q.t = P + (2y/aJ, (4.5) 

where y is the coefficient of surface tension for the spherical gas-liquid interface.? 
By the assumption of isothermal conditions in the gas, the product of each Qi 
and the respective bubble volume is constant. Thus (4.5) shows that 

(Po + p )  a: + 2 7 4  = const. 

= Po + 2ya&. (4.6) 

t The pressure difference Qr - P due to surface tension appears unlikely to be important 
in many practical examples of bubbly liquids, even when surface tension has an important 
r61e in keeping the bubbles spherical. For instance, if P is 1 bar and the bubble radius a, is 
0.1 nun, which in most practical situations would not be an exceptionally large value, then 
the fractional difference ( Q i - P ) / P  is only 0.014 for water. The effect of surface tension is 
worth including in the theory, however, because it poses little extra difficulty and because 
applications are possible where the bubbles are small enough or the pressure of the suspension 
is low enough for this effect to become significant. 
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If Po+p > 0, this cubic for ai has a single positive root: that is, a, is uniquely 
determined as a function of p .  This function can be expressed explicitly but 
does not warrant that much trouble, and we may be content to connote it by 
writing 

a, = a&) [a,(O) E aio]. 

By substitution of this result in (4.3) and (4.2), the 
the local density p is seen to be 

on the assumption that pl is independent of p (i.e. 

function of p determining 

(4 .7)  

the compressibility of the 
liquid is neglected in comparison with that of the mixture). 

In  the case that the bubbles are locally all equal, (4.7) obviously reduces to 

If the effect of surface tension is ignored, the variety of the bubble sizes becomes 
immaterial, for (4.6) and (4 .3)  imply that v = Povo/(Po+p)-as is directly evident 
since Pw is the total gas constant per unit mass of the mixture and is therefore 
invariant. The density function is then 

(4.9) 

Note that each of these three expressions for R(p)  has the foreseeable property 
R +pl asp --t 00. 

For a homogeneous suspension at rest in its primary state (i.e. W = 0 ) ,  the 
low-frequency sound speed c is given by c - ~  = R’(0). From (4.7) we have 

and differentiation of (4 .6)  shows that 
at0 

3P0 aio + 47 ’ 
a;(O) = - 

Hence, using the identity pzw = ~ ( 1 - s )  implied by (4 .1) ,  we obtain 

(4.10) 

In  the case that all bubbles have the same radius a. in the primary state, this gives 

(4.11) 

a formula that long had been known (see, for example, Mallock 1910). If the 
effect of surface tension is ignored, the result irrespective of variety of bubble 

PO (4.12) 
sizes is 

c2 = 
P 1 ~ 0 ( 1 - ~ 0 )  - 
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Consider now the general formula (3.6) for the sound speed when the properties 
of the composite fluid are not uniform over the cross-section u. Taking the case 
where the bubbles are locally of the same size, so that R'(0) is given by (4.11), 
we have 

(4.13) 

where p = 2y/P0. If p = 0, this expression is also valid independently of the 
local distribution of bubble sizes. In  a practical case it is quite likely that so < 1 
everywhere in u, and thus the density p is not significantly different from the 
density pl of the mixture. If in addition surface tension is insignificant, (4.13) 
reduces approximately to 

P c2 = 0 
P, 50 ' 

where 

is the average volume fraction of gas in the duct; and so c is independent of how 
the total gas content of the mixture is distributed. Thus it appears that the 
low-frequency sound speed relative to fluid at rest will not be appreciably 
affected by non-uniformities in gas concentration unless surface tension is im- 
portant or the volume fraction of gas is large enough to make the density of the 
mixture significantly less than that of the liquid. 

The enthalpy function H ( p )  can be found from (4.7), thus 

Rearranging (4.6) and writing B, for the constant on its right-hand side, we have 

"~ 

from which there follows 

= y(a9 - a;0) + B, In ( ~ : ~ / a ; )  

Hence the final result is 

I n  the case of equal bubbles, (4.14) reduces to 
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and if the effect of surface tension is ignored the result is 

(4.16) 

(cf. Prandtl 1952, p. 331). 
The formulae (4.7) and (4.14), or the simplified versions noted below them, 

provide for the practical use of the theory given in 3 3. For thereby the required 
properties of the composite fluid are calculable from data about the primary 
distribution of bubbles. Note again, as in the discussion of (4.3) and (4.4), that 
it may be convenient to replace the summations in (4.7) and (4.14) by integrals 
with respect to a probability measure ( (a) .  

Convexity of the function I(p) 
To confirm the applicability of the conclusions established in 0 3, in particular 
concerning the transcritical property of conjugate flows, it remains to show that 
I”(p)  > 0, where I ( p )  is the integrand in (3.4). In  terms of the dimensionless 
variable 

r = pl/R = (1 -$)-l, 

this function may be expressed as 
WR(0) reQ7) 

= p1Z/{ w2 - 2H(p)}  ’ 
and we recall that the radical in the denominator represents w, the axial velocity 
in the conjugate flow. Differentiating this expression with respect to p and using 
the fact that H ( p )  = l/R(p) = r(p)/pl by definition, we find that 

(4.17) 

It is assumed that W > 0 everywhere and, as explained in $3,  we restrict 
attention to a range of pressure such that w > 0, thus presuming no stagnation 
to occur in the conjugate flow. The required property I” > 0 is therefore proved 

3rr’ 3r3 by showing that 
f = r’’ +- +- 

pzw2 (p1w*)Z ’ O -  

Now r is positive and r’ negative always (i.e. the density of the suspension always 
increases upon an increase of pressure). It follows that for arbitrary variations 
of p1 w2 the preceding expression for f has a minimum value, which is given when 
plw2 = - 2r2/r‘. Evidently f cannot be less than this value, whatever the value of 
p1w2 may in fact be, and thus we deduce that I”  > 0 is implied by 

rr”-$rf2 > 0. (4.18) 

To test this inequality in the present example, we have from (4.7) 

r = 1 +&a: with K = gnp,, 

and hence r’ = ~KZU~U;, 

r” = 3~I;(a;a;)‘. 



Conjugate-$ow theory for heterogeneous j u i d s  

Differentiation of (4.6) with respect to p gives a t  once 

561 

and then after a little calculation 

Thus we obtain 

in which T ’ ~  > 0. Use is now made of Cauchy’s inequality for series (Hardy, 
Littlewood & Polya 1952, p. 16). Since a< > 0 for all i = 1,2, ..., n, we have 

and hence conclude from (4.19) that 

This result obviously establishes the inequality (4.18), which verifies the positivity 
of I” given by (4.17). 

5. Conclusion 
The main substance of this paper is the demonstration that conjugate-flow 

principles, as have appeared in studies of various other hydrodynamical problems, 
apply to the problem of heterogeneous fluid flow explained in $52 and 3, so 
affording a rationale for a diversity of possible phenomena. As is already known 
with regard to open-channel flows, axisymmetric vortex flows and flows of 
density-stratified fluids under gravity- to name the most discussed examples - it 
has again been confirmed that any energy-conserving transition between axially 
uniform flows goes from a supercritical to a subcritical state or vice versa, and 
that in such a pair of conjugate flows the subcritical member always has the 
greater value of flow force. The abstract mathematical reasons that explain 
these universal properties of nonlinear flow systems have been pointed out by 
Benjamin (1971), and the present conclusions might otherwise be anticipated 
by broad physical analogies with other, more familiar long-wave problems. But 
the actual way in which the conjugate-flow aspects of this problem emerge seems 
novel. 

The application to non-uniform suspensions of gas bubbles may offer some 
prospect of practical use. The shortage of relevant experimental results, how- 
ever, even for approximately homogeneous suspensions, suggests that the special 
effects described by the theory may prove exceedingly difficult to appreciate 
in practice. For given non-uniformities of bubble concentration the results of 
the theory can be evaluated without much trouble, but the temptation to present 
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a comprehensive calculation for some arbitrary model has been resisted. Such 
an exercise would seem hardly justified until a specific experimental situation is in 
view. 

Interesting and challenging new aspects of the problem arise if the restriction 
to very long waves is abandoned. It can at once be recognized that two 
mechanisms of dispersion are operative. The first entails the inertia of the radial 
motion of liquid in the vicinity of each pulsating bubble, producing a phase lag 
between the local ambient pressure in the suspension and the gas pressure inside 
the bubbles. This effect was noted by Carstensen & Foldy (1947) and described 
in more detail by Meyer & Skudzrijk (1953). Recently van Wijngaarden (1968), 
considering waves of small but finite amplitude and moderate length in homo- 
geneous suspensions, showed that the competition between this dispersive effect 
and first-order nonlinear effects is describable by equations similar to those for 
long water waves. The second dispersive mechanism depends on the structure of 
the inhomogeneities in fluid properties, and thus it poses a theoretical problem 
of a familiar kind concerning wave propagation in non-uniform media. A theory 
accounting for both kinds of dispersive effect and also nonlinear effects would 
probably be quite difficult. 

We finally note a result that may be derived straightforwardly when the 
second type of dispersion is considered independently of the first. This relates to 
an infinitesimal wave, propagating in a heterogeneous fluid originally at rest, 
such that the pressure perturbation takes the form 

p = @(x, y) &(*-Ct). 

The wave speed c and wavenumber k are found to be related through the 
characteristic-value problem 

(5-1) 1 V .  (rV@) + k2r( 1 - c2q) @ = 0 in (T, 

an@ = 0 on boundary of cr, 

where r = pl/R(O, x, y), q = R’(0, x, y) and a, denotes the normal derivative, If 
k2 = 0, the only solution of (5.1) is p = const. But the requirement that (5.1) 
should have a non-trivial solution for arbitrarily small k2 [in fact taking the form 
1+k2@1(x,y)+O(k4)] is readily seen to determine the long-wave limit c(0) of 
c(k) .  It appears in this way that 

1) - C y o )  ‘q} dx dy = 0, 

which recovers the formula (3.6) for the low-frequency sound speed. 
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